

Характеристики готовых решений для водно-химического контроля. Особенности применения технологий на основе портативного оборудования

Алла Геннадьевна Богачева, Заместитель руководителя Учебного центра «Крисмас»

Воды: основные виды и показатели

Питьевые воды

Питьевая

Расфасованная

Минеральная

Природная и т.п.

Природные воды

Рыбохозяйственное назначение

Хозяйственно-питьевое

назначение

Культурно-бытовое назначение

Грунтовая

Почвенная

Артезианская и т.п.

Производственные воды

Теплофикационные

Технические

Воды котельных

Воды холодного

водоснабжения

Воды горячего водоснабжения и т.п.

Сточные воды

Водоотведение (бытовое, производственное, атмосферное и т.п.)

Морские воды

Морская
Сильноминерали
зованная
пресная
(>3 г/л) и т.п.

Характерные сложности при выполнении химического контроля воды

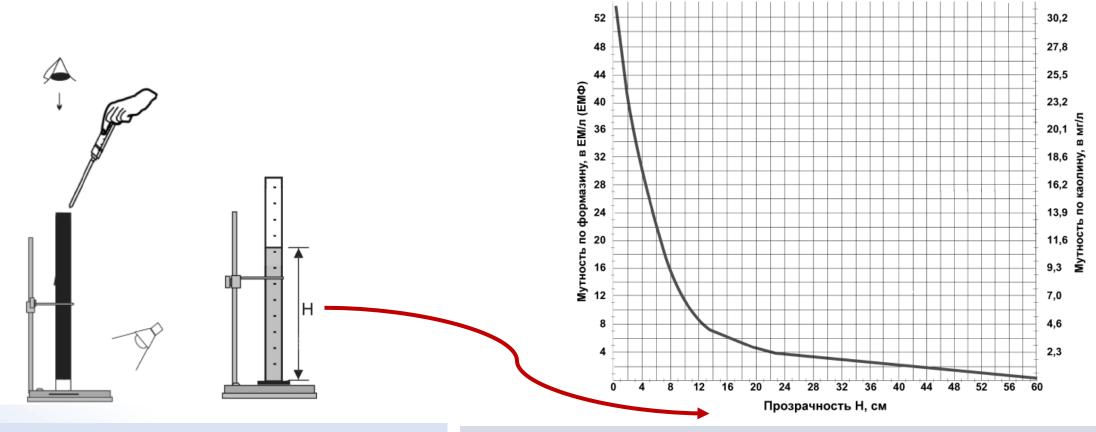
- ▶Наличие различных нормативных документов на методики анализа, предусматривающих использование различных методов для разных вод;
 - ➤ Неадаптированность аттестованных методик измерений водных показателей для внелабораторного контроля, т.е. в отсутствие лабораторий;
- ➤ Необходимость выполнения большого объёма сопутствующих работ подготовка проб и реагентов, приготовление растворов и др. (как правило);
 - Алгоритмическая сложность методик измерений (часто, и требует квалификации);
 - ➤ Необходимость формирования лаборатории (финансирование, площади, кадры);
- ➤ Необходимость оснащения лаборатории (финансирование, приборы, реактивы, материалы, посуда, оборудование и др.);
 - ▶Трудности с кадрами (поиск, обучение/стажировка);
 - Необходимость совмещения химических и приборных методов (как правило);
 - ▶Вопросы аккредитации, взаимодействие с надзорными организациями.

Преодоление сложностей в химическом анализе на пути к готовым решениям

 Готовые к применению реагенты, растворы.
Минимизация пробы при соблюдении заданных показателей.
 Обеспечение работоспособности анализа на максимально длительный срок (сроки годности и службы).
Подбор необходимого для анализа оборудования, посуды, принадлежностей.
Модификация методик анализа в направлении их унификации, простоты, типовых алгоритмов.
 Применение внелабораторных методов.

Соответствие готовых решений нормативным данным

Уровень соответствия	Показатель			
1. Метод и методика соответствуют:				
• Экспериментальные	Алюминий (ПВ), Гидрокарбонаты (ПВ), Аммиак (КВ), Железо общее (ПВ, ВП), Прозрачность (ПВ) и ещё 23 показателя			
• Расчётно-графические	Жёсткость карбонатная (КВ), Сульфаты (КВ), Жёсткость усл. сульфатно-кальциевая (КВ), Щёлочность карбонатная (КВ)			
2. Метод соответствует, методика аналогична	Кислород растворённый (ПВ, ВП), Общая жёсткость(ВП, КВ) Окисляемость перманганатная (ПВ, ВП) и ещё 5 показателей			
3. Метод аналогичен, методика оригинальна	Сульфиты (ПВ, ВП, КВ), Мутность (ПВ), Нитраты (ПВ, КПВ)			
4. Метод и методика оригинальны	Кислотность (КВ), Нефтепродукты (ПВ, КПВ), Никель (ПВ) и ещё 3			
Сокращения: ПВ – вода питьевая и природная; ВП – вода в технологиях водоподготовки; КВ – воды котельных (производственные).				


Примечание. 1. Систематика соответствия на основе ФГИС подсистема «АРШИН» (Аттестованные методики (методы) измерений).

2. В таблицу не включены методы и методики с применением приборов контроля воды.

О связи экспериментальных и расчётно-графических показателей на примере методов определения прозрачности и мутности

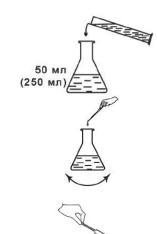
(метод разработки ЗАО «Крисмас+»)

Экспериментальное определение прозрачности с цилиндром методом «по шрифту»

Определение мутности по номограмме «Прозрачность – мутность» (мутность в единицах мутности ЕМФ по формазину и мг/л по каолину)

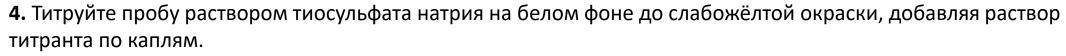
Операции при определении кремниевой кислоты (ТК «Кремниевая кислота КВ»)

- 1. Отберите в мерную склянку анализируемую воду до метки «10 мл».
- 2. Добавьте 1 мл раствора молибдата аммония и 6 капель раствора серной кислоты. Склянку встряхните для перемешивания раствора.


- 3. Оставьте склянку на 5 мин. для полного протекания реакции.
- 4. Добавьте к пробе пипеткой 1,5 мл раствора щавелевой кислоты (для устранения влияния фосфатов). После добавления каждой порции склянку встряхивайте для перемешивания.
- 5. Добавьте к пробе полимерной пипеткой 2–3 капли раствора восстановителя. Склянку закройте пробкой и встряхните для перемешивания раствора.

- 6. Оставьте пробу на 5 мин. для полного протекания реакции.
- 7. Проведите визуальное колориметрирование пробы. (При получении результата анализа учтите разбавление пробы очищенной водой, если разбавление имело место).
- 8. При фотометрическом определении измерьте оптическую плотность окрашенной пробы на фотоколориметре (660–750 нм, в кюветах 10–100 мм) относительно очищенной воды. Рассчитайте массовую концентрацию кремнекислоты (СКР.К., мг/кг) с использованием предварительно построенной ГХ.

Операции при определении суммарного активного хлора (ТК «Активный хлор»)



1. Ополосните колбу коническую несколько раз анализируемой водой. Налейте в колбу пробу воды в необходимом (50 мл или 250 мл, в зависимости от ожидаемой концентрации АХ) объёме до метки.

2. Добавьте в колбу пипеткой полимерной 1,0 мл ацетатного буферного раствора. Содержимое колбы перемешайте.

3. Добавьте в колбу около 0,1 г йодида калия, используя мерную ложку. Перемешайте содержимое колбы до растворения соли. При наличии АХ раствор приобретает жёлто-бурую окраску.

5. Добавьте пипеткой полимерной 0,5 мл раствора крахмала (раствор в колбе синеет) и продолжайте титрование по каплям до полного обесцвечивания раствора.

6. Определите общий объём раствора тиосульфата натрия, израсходованного на титрование как до, так и после добавления раствора крахмала (V_{TC} , мл).

7. Вычислите концентрацию суммарного активного хлора (C_{Ax}) в мг/л по формуле:

$$C_{AX} = \frac{V_{TC} \times M \times 35,5 \times 1000}{V_{TD}}$$

Средства комплектации портативных изделий

- Готовые к применению реагенты и растворы во флаконах с контролем первого вскрытия
- Капсулированные реагенты
- Средства дозировки (пипетки, склянки, пробирки)
- Посуда и принадлежности
- Укладки с ложементами
- Документация

Руководство по аналитическому химическому контролю при водоподготовке и эксплуатации котлового оборудования

ЭКСПЛУАТАЦИОННЫЙ И ИНФОРМАЦИОННЫЙ МАТЕРИАЛ.

СОДЕРЖИТ СВЕДЕНИЯ:

- о работе с портативным оборудованием при аналитическом химическом контроле;
- о подготовке к анализу и порядке выполнения определений;
- о составе и комплектности оборудования;
- правилах отбора проб и мерах безопасности;
- методиках выполнения определений показателей, оцениваемых химическими, физико-химическими, расчётно-графическими методами и др.

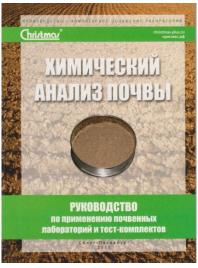
Также используется в профессиональном обучении производственного персонала.

«Крисмас+», 2024 ISBN 978-5-89495-295-6

Руководства оператора

оборудования

Санкт-Петербург



Портативное комплектное оборудование для анализа воды

Водно-химические экспресслаборатории модели ВХЭЛ (котельные)

Настольные лаборатории модели НКВ-12 (12.1)

Полевые лаборатории модели НКВ-1 (НКВ-1Фк)

Тест-комплекты

Комплекты пополнения

Приборы контроля воды и др.

Тест-комплекты для химического анализа воды

	R
 PNEMO	YZ
STIGNIC	

Органолептические показатели	прозрачность и мутность, цвет
	рН, БПК, кислотность, растворенный
Общие и суммарные	кислород, ХПК, перманганатная
показатели	окисляемость, хлор активный, цветность,
	щёлочность и др.
	карбонаты, гидрокарбонаты, карбонатная
Минеральный состав	жесткость, кальций, магний, общая
іминеральный состав	жесткость, сульфаты, хлориды, фториды,
	солесодержание и др.
Биогенные элементы	аммоний, нитраты, нитриты, фосфаты
Металлы	алюминий, железо общее, марганец, медь,
	никель, свинец, цинк, Σ Me
Органические вещества	нефтепродукты, ПАВ анионоакт, фенолы и
органические вещества	др.

Водно-химическая экспресс-лаборатория ВХЭЛ

Предназначены для операционного контроля производственных вод и теплоносителей, а также водоподготовки на энергетических объектах.

Анализ проводится по стандартам энергетической отрасли.

ВХЭЛ-1 и ВХЭЛ-2, в малой настольной укладке, до 14 показателей; **ВХЭЛ-3**, в большой настольной укладке, до 26 показателей (3 модификации).

Предусмотрено при аналитическом химическом контроле производственных вод (ОСТ 34.70.953.2, РД 24.031.120, РД 24.032.01, МУ 08-47/227 и др.) для показателей: аммиак, железо, кремниевая кислота, кислород и др.

Очищенную воду, используемую для подготовки к определению, вне зависимости от способа приготовления, следует проверить на соответствие требованиям ГОСТ Р 52501.

В качестве очищенной воды могут быть использованы:

- имеющиеся в технологических циклах на предприятии Н-катионированная вода или конденсаты;
- очищенная вода, приготовленная с применением портативных лабораторно-промышленных установок различных типов;
- специально приготовленная очищенная вода для химического анализа по ОСТ 34.70.953.2 (лабораторно-промышленная установка УВХА производства ЗАО «Крисмас+»).

Установка для приготовления очищенной воды для химического анализа УВХА

Метод очистки состоит в применении различных технологий фильтрации дистиллированной воды или конденсата через ионообменные смолы и фильтрующие материалы.

Предназначена для **получения химически очищенной воды** на основе **ОСТ 34-70-953.2**, используемой при аналитическом химическом контроле производственных вод (**ГОСТ P 52501**).

Может поставляться в модификации совместно с кондуктометром типа МАРК 603 с датчиком ДП-015 (контроль качества очищенной воды).

Настольная лаборатория химического анализа воды НКВ-12

Руководство

Типовые модификации:

НКВ-12 «Вода питьевая и природная»

до 21 показателя (2 модификации);

НКВ-12.1 «Вода природная и водоподготовка»

до 29 показателей (3 модификации);

НКВ-12.2 «Водоснабжение и водоотведение»

до 23 показателей;

НКВ-12.3 «Вода агрессивная грунтовая»,

до 14 показателей;

НКВ-12.4 «Вода расфасованная», до 26 показателей.

Поставки дополняются приборами контроля и тест-комплектами (для некоторых модификаций).

Сертификаты/свидетельства:

Аттестованные методики измерений (ПНД Ф, МВИ, РД); Патент РФ № 96342.

Полевая лаборатория анализа воды: модели НКВ-1 (НКВ-1Фк)

Наиболее компактная модель, легко переносимая и разворачиваемая. Применима для анализа питьевой и природной воды по важнейшим (от 14 и более) показателям, возможно применение при анализе в процессах водоподготовки.

Предусматривает дополнение тест-комплектами и приборами. Обеспечено печатными руководствами, картами-инструкциями и комплектом файлов для удалённого доступа.

Приборы контроля воды

рН-метры рН 410, МАРК-901

Кондуктометры ЭКСПЕРТ-002-2-6-н, МАРК-603, АНИОН-7025, DIST2

Кислородомеры МАРК-302Т, АНИОН-7040, АКПМ-1-02Т

Иономеры И-510

Набор-укладка для фотоколориметрирования Экотест-2020-К

Весы цифровые и др.

Анализ производственной воды котельной

ВХЭЛ-1, настольная, 12 показателей по 100 анализов, 243,7 тыс. руб. с НДС

1 анализ воды: **208 руб. в изделии / 94 руб. в КП**

Тест-комплект «Железо КВ», на 100 анализов, 22,8 тыс. руб.

1 анализ воды: 228 руб. в изделии / 80 руб. в КП

Анализ питьевой/природной воды

НКВ-12.1, настольная, 25 показателей по 100 анализов, 333,4 тыс. руб.

1 анализ воды: **133 руб. в изделии / 72 руб. в КП**

Тест-комплект «Общая жёсткость», на 100 анализов, 10,2 тыс. руб.

1 анализ воды: 102 руб. в изделии / 38 руб. в КП

Взаимодействие с потребителями

Консультирование и стажировка фактических и потенциальных потребителей оборудования ЗАО «Крисмас+»

Нацеленность на **развитие, обновление, модернизацию** производимой продукции

Ознакомиться с руководствами и практикумами

Дополнительная информация:

191119 Санкт-Петербург, ул. Константина Заслонова, д. 6. 8 (800) 302-92-25 (бесплатный звонок по России) (812) 575-54-07, 575-55-43, 575-88-14

> <u>info@christmas-plus.ru</u> <u>christmas-plus.ru</u>

Алла Геннадьевна Богачева +7 (905) 274-94-33 metodist_uc@christmas-plus.ru

Учебный центр Группы компаний КРИСМАС